" CARTRIDGE
' DEVELOPMENT GUIDE

http://www.alphaworks.com.au/blog/

TABLE OF CONTENTS

CARTRIDGE DEVELOPMENT SYSTEM .icevveeerrrerseeasuecseeenns
TP O T A NI cnsesscensesneasssssanssennesnannsassanmymssnnennt i lisdanstaasssatns

[VIAX METHOD sconswsmummmsessasvmassvsissummosssssmrssesmmsasmismmsssa
NORMAL RESET PROCESS sssesscssissessuscsssasiassisssassssnorsavsrsussosarsssiee
UNIVERSAL 8/16 CARTRIDGE «-eevereeenesessssssueniscsansisscsssissenas
COMMODORE 128 CARTRIDGE MODICATIONS -.veceevee

Alphaworks Pty Ltd
14 Kaloma Court
Alexandra Hills

QLD 4161
Australia

www.alphaworks.com.au

L |

iiiiiiiiiii

CARTRIDGE DEVELOPMENT SYSTEM

The Universal Cartridge Development System iS a complete Kit Of
parts tO build ah 8K or a 16K switChable Cartridge. In its Simplest form
the board Cah be formatted as ah 8K Cartridge to appear in memory at
$8000-39FFF, $SADOQ-SBFFF or even replace the kernal at SE000-SFFFF.

By looking at the CirCuit diagratm you will see that fitting the wire [ink
will ground the EXROM line and hence the Cartridge will appear at
$8000. ROML is already connected to the chip enhable. If the GAME is
also grounded than the Cartridge will then appear at $AQQOQ but this
time enabled by ROMH.

We have tried to make the board as versatile as possible both for you
ahd ourselves since we base most Of our own products on this board.
Further examination Of the CirCuit diagram will show that many more
methods Of configuration are Catered for. For instance both the
Game end EXRQM lines can be conhected to the 1/01 and 1/02 lines.
These lines are uhder software contro| and therefore a. Cartridge Can
be controlled by software.

The Epyx Fastload Cartridge uses the /O lines t0 make itself invisible
t0 the system.

Please read the booklet Carefully and all will be revealed. The above
information is only an overview Of the options available for this
producCt. The rest of this booklet will deal with the various control
lines to configure the system. Much of the information is hot readily
available elsewhere, indeed Commodore themselves treat this subject
as though it was some sort Of secCret.

When you have read the rest of the instructions you will appreCiate
that it not that complicated to achieve great thihgs. On the other
hahd if you find it difficult just read through it again ahd we are sure
you will pick it up. We have made it as concise as possible and it is an
area that is wejl worth unhderstanding.

IMPORTANT

Never plug inh or remove a Cartridge board while your computer is
turned onh, always turn OffF Your computer before inserting or removing
the Cartridge.

It is extremely important that you insert the PCB the correCt way up
on your Commodore 6¢ / 128 as t0 avoid problems.

HARDWARE CONTROL OF THE PLA

The memory that the miCroproCessor sees may also be controlled by
hardware. Hardware contro| reqguires ah actual connection from the
pins on the Cartridge port to ground. Two Of the lines cohhected from
the PLA t0 the Cartridge port Will contro| memory configuration. The
PLA will monitor the voltage leve| Of these two lines. These two lihes
are Called the EXROM line and the GAME line. These two lines are
normally high (+5v). When either (or both) of these lines are grounded
the PLA will reconfigure the memory that the miCroproCessor sees.

Grounding only the EXROM lihe will cause the PLA to reconfigure
memory so that the miCroprocessor will |00k to the Cartridge port to
Ffind the memory from $8000-39FFF. All of the other memory |oCations
will remain intact. BASIC ROM, KERNAL ROM and the /O deviCes
will remain in efFect. Jnder normal Circumstances the EXROM line
would be grounded only if a Cartridge had been installed. If we were
to ground the EXROM line without- a Cartridge installed the
microprocessor would not find any memory at these [0Cations ($8000-
$9FFP). The PLA does not Care if any memory exists at the memory
locations that the microprocessor is |ooking at. If we ground the
EXROM line without plugging in a Cartridge, the PLA will prevent the
miCroprocessor from seeing any memory other than what is at the
Cartridge port (nothing in this example). The miCroproCessor will only
find random garbage in this area. This is a way for the PLA to prevent
the miCroprocessor from seeing the RAM hormally at $8000-S9FFF.
REMEMBER THAT WHEN THE EXROM LINE IS GROUNDED
THE PLA WILL CAUSE THE MICROPROCESSOR TO SEE ONLY
THAT MEMORY THAT IS PLUGGED INTO THE CARTRIDGE
PORT. THIS WILL OCCUR WHETHER THERE IS A CARTRIDGE
PLUGGED IN ORNOT!

Grounding only the GAME line will Cause the PLA to 'reconfigure
memory so that the Computer will be able to use Cartridges desighed
for the "ULTIMAX" system. The KERNAL ROM and the BASIC
ROM will be switChed out ahd the miCroprocessor will |00k to the
Cartridge port for memory in the $8000-$9FFF and the SEQQQ-SFFFF
ranhge. This configuration of memory will cause the miCroprocessor hot
to see ANY memory in the following areas of memory; $1000-$7FFF and
$AOOQQ-SCFFF (images' may appear in these open areas). Memory
locations $0000-80OFFF will appear as the hormal RAM and $DOOO-
$DFFF will appear as the normal /O devices. The miCroprocessor will

4

00K for memory |ocations $8000-89FFF and SEQQQ-SFFFF oh the
Cartridge port. Again, this memory configuration is only for those
cartridges that emulate the JLTIMAX system.

Grounding BOTH the EXROM and the GAME lihes at the same time
will cause the PLA to reconfigure memory so that the miCroprocessor
will ook to the Cartridge port for memory at [ocations $8000-$BFFF.
This configuration will allow the use of 16K Of continuous cartridge
memory. 8K will reside in the normal area of Cartridge memory ($8000-
$9FFP). The other 8K will reside in the area of memory that is normally
reserved by BASIC GAOOO-SBFFP.

This memory configuration will also allow for the programmer tO
switch between the RAM and ROM located at memory |oCations
$8000-89FFF. By controlling the LORAM line the programmer may
select RAM or cartridge ROM. When the LORAM line is high the
PLA will cause the microprocessor to see ROM at |oCation $8000-
$9FFF. When the LORAM line is low the PLA will cause the
miCcroprocessor to see RAM at locations $8000-$9FFF ahd the
microprocessor will still see the cartridge ROM located at $AQQO-
$SBFFF. In other words, trying to turn off the BASIC ROM with
LORAM when GAME and EXROM are both grounded will turh off
the Cartridge memory at $8000-9FFF but will hot turh Off Cartridge
memory at SAOOQO-BFFF!

We have now covered the major functions of the PLA and
miCroprocessor combination used in the C-6¢4 as they relate to memory
management. The PLA also has a few other important functions.
When the miCroprocessor writes to0 ah area of memory that contains
both RAM and ROM BASIC ROM $AOOO-$BFFF, for example) the
PLA will allow the miCroprocessor to write to the underlying RAM.
The PLA will decode- the miCroprocessor’s instructions when it is
reading and writing. The PLA will then “decCide” what memory that the
microprocessor should have access to (RAM or ROM). If the
miCroprocessor is going to write (STA) a value in memory, the PLA will
select the appropriate memory (ROM cannhot be writtenh t0). If the
miCroprocessor will be reading (LDA) a value from memory, the PLA
will select the proper area of memory based upon the LORAM,
HIRAM, EXROM and GAME lines. The one deviation from the
preceding example is whenh the miCroprocessor writes to the memory
at SDOOO-SDFFF. This memory normally contains the 1/O devices,
rather than RAM or ROM. Because of this, the PLA will allow the
miCroprocessor t0 both read and write to these addresses. These

addresses do not normally refer to actual RAMMOM memory
locations used by the 6510. They primarily contain the onboard
registers of the /O devices and the colour RAM used by the VIC
chip. The VIC (video) chip, the SID (sound) chip, the CIA'S
(communication) chips and the colour RAM are located ih this area of
memory.

The VIC chip Canh also access (look at) memory. The VIC Chip Can only
address 16K Of memory at ahy onhe time. The VIC chip also causes the
PLA to select what area of memory iS available to the VIC chip. For
instance, when the VIC chip wants to access the CHARACTER
ROM, the PLA will select this chip rather thah the YO devices
normally loCated from S$DOOQO-SDFFF. For our purposes, we have
already covered all that we heed to0 about the 6510 miCroprocessor

and the PLA. |

If you have a hard time digesting all the information presented to you

in this Chapter, DON'T WORRY ABOUT IT! A tremendous amount of
information had been presented here. Let’s just review a few of the
more important Concepts:

-

The 6510 miCroprocessor is RESET upon power up.

2. Whenever the microprocessor is RESET the LORAM, the
HIRAM and the CHAREN lines will be set high.

3. The PLA will contro| the miCroproCessor’s access to various
areas of memory.

4. The PLA may be controlled by both hardware and software
methods.

5. By grounding the EXROM line we Cah prevent the
microprocessor from seeing RAM at |oCations $8000 - $9FFF
(very important).

6. A software RESET (SYS 64738 or JMP $FCE2) is different thanh

a hardware RESET.

PRrIIETEE

Poor:

¥ i
L
LTI
i
)
kil
e
i .
W
% ;
. BOR

A
E S
YR

CARTRIDGES AND CARTRIDGE BOARDS

There are two main ways to use an EPROM in your Commodore
computer system. You Can use the EPROM on a plug-in Cartridge
board, Or YOou Cah use it to direCtly replace one of the ROM chips in
the computer or drive. We'll cover both of these topics, but |et's
concentrate oh Cartridges for how. There are several different Kihds
Of Cartridges for the C-6%, inCluding exotiC Cartridges used ib some
CommerCial products. TO unhderstanhd the differences among
Cartridges, we heed toO |00K at how Cartridges are recoghized and
accessed by the computer. Before proceeding, be sure you have read
the Chapter on memory management. In that Chapter we |[ooked at the
PLA and its relationship with the rest of the computer. In this
Chapter we'll [0ok at how Cartridges interact with the PLA.

The sitmplest type of Cartridge is the 8K Cartridge. Actually, you could
put LESS than 8K of EPROM on this type of Cartridge, but 8K is the
maximum, SO we'll |oosely Call it the standard 8K Cartridge. A single
276¢ EPROM (8K) is usually used in these cartridges (Commercial
Cartridges may use PROMSs instead). When this type Of Cartridge is
plugged into the computer, the EPROM will be "seen” by the Computer
at memory address $8000-9FFF. The RAM which is normally there will
“disappear’. Of course, you'tl get your RAM back whenh you unplug
your Cartridge. In fact, the contents of the RAM wili be unchanged.
By the way, NEVER. plug or unplug a Cartridge when the computer
power is oh, uhiess You have a cartridge power switch. Doing so could
destroy your computer and Cartridge!)

The second type of Cartridge Can hold up to 16K Of memory, $O we'll
Call it the stahdard 16K Cartridge. Two 276¢ EPROM’S usually supply
the 16K. The first EPROM will appear in memory at $8000-$9FFF,
replacing the normal RAM there. The second EPROM will appear at
SAOQOQ-SBFFF, knocking out the BASIC ROM which is usually
[oCated there. This gives us 16K Of continuous Cartridge memory from
$8000 t0 $BFFF. If you recall that the BASIC ROM is already "sitting”
on top of 8K Of RAM, you Canh appreCiate how much is going on
behind the scenes to keep all this straight.

The third type of cCartridge is Called an ULTIMAX or just MAX
Cartridge. LTIMAX was a video game system produced by
Commodore and sold only in Europe, and only for a short while. It
used the same VIC II and SID chips as the C-6¢. The designers of the

C-6¢4 arranged it so that Cartridges for the MAX would work on the C-
6¢ too. On the C-6¢, MAX cartridges replace the KERNAL ROM
located at SEQOQ-SFFFF with their own 8K of EPROM. MAX
cartridges may also have another 8K of ROM memory if desired, whiCh
will appear at $8000-39FFF. Onhe specCial feature of MAX Cartridges is
that the enhtire RAM Of the Computer disappears except for ¢K at
$0000-$OFFF. Because we Can't access most of the RAM, MAX
Cartridges really aren't useable in very many applications.

We just said that the EPROM’s in these Cartridges 'replace' different
areas Of memory. This is really only true for read operations. Write
operations will vary in their effect depending on the type of Cartridge.
For example, with an 8K cCartridge plugged in, the Ccomputer will be
able to read the cartridge EPROM at $8000. If the Computer tries to
write to this |oCatioh, however, the data Wwill end up in the RAM
"under" the Ccartridge. Likewise, with 16K Cartridges write operations
- 80 t0 RAM automatically, 'even though the second EPROM at
$AOOOQ-$BFFF is two levels removed from RAM (the BASIC ROM is
sandwiched in between the EPROM and RAM). With MAX Cartridges,
however, the RAM is truly "gone". Writing has NQ effecCt on any area
of RAM except the $0000-8OFFF area.

How do the cartridge EPROM’S and RAM Chips khow when to
respond and when not to? Why does a read operatioh go to EPROM
and a write operation go to RAM? We saw in a previous Chapter that
the C-64'S PLA chip is in charge of memory management. In this
Chapter we'|| see how the Cartridge controls the PLA to produce
these effects. At the same time, we'll address a related topiC -what
makes the three types of Cartridges different? Why do the cartridge
EPROM’s appear at the locations they do?

The anhswers to these questions lie in the EPROM'S enable lines. In
order for a Chip t0 be active, it must have a supply of power, first of
all. Tt must also have address and data lines t0 CommuniCate to the
outside world. (Most chips alsO have at |east one enable line. Most Of
the EPROMS discussed in this book acCtually have two enable lines,
Called the chip enable (CE) ahd output enable (OF.) lines. Both have to
be controlled correcCtly in order tO access the chip. Ah enhable line is
like a switch. The chip enable (CE) is a power switch. Even if power is
~ aVvailable, the chip will not become active until the CE line is brought
fow (grounded; set t0 0 VoIts). The abbreviation CE is usually written
with a bar over it to indicate that the CE line performs its function
only when it is brought low (this is Called active low). Whenh CE is held

10

high (+5 volts), the Chip is put into "standby” mode. In this mode the
Chip uses much less power thah when active. A cCertain minhimum
amount of power is used in standby mode to keep the Chip "warmed
up’. EPROM’s don't require ANY power just to retain their data.

The other enable line, output enable (QE), controls the Chip's data
lines. QE is usually written with a bar over it too, SihCe the Chip will
only put out data when the OE line is Iow. Ih order for the Chip to be
active, both OE and CE have to set |ow at the Same time. On C-6¢
Cartridges, the two enable lines from the Chip are Combined ihto a
single line to make enabling the Chip easier. The Chip Can be enabled by
switChing this one combined line high or low. Cartridges with two
chips on board have a separate enable line for each Chip. Each enable
line is a combination of the OE and CE lines from one Chip. From how
on when we speak of THE enable line for a chip, we'll be referring to
the combination of CE and QE.

Enable lihes are used when several Chips are connected to the satme
set Of address and data lines. If more than one Chip were active at the
same time, there would be mass confusion (bus conflict) and possibly
even physiCal damasge to the chips. By controlling the enable lines, you
Can make sure onhly ohe Chip at a time will be active on the address and
data lines. Does this situation sound familiar? Of course - it's exactly
the situatioh we have in the C-6¢ when we plug in a Cartridge, sinCe we
could have EPROM, ROM and RAM potentially residing at the same
address! Now we see that there is really a simple prinCipal underlying
the complexity of memory management. The PLA Chip, in its infinite
wisdom, knhows which chip enhable line to switCh oh, depending on what
type Of Cartridge (if anhy) is plugged in and whether the operation is a
read or a write. Remember, write operations are usually directed to
TRAM, except when writing to the /O devices at $SDOOO-$DFFF. Read
operations have to be sorted out and directed to the proper chip

(EPROM, ROM or RAM).

The PLA has manhy lines coming into it (inputs) that it uses to sense
the present state of the computer. It also has several lines coming out
Of it (outputs) that are used to contro| the memory chips. The PLA
monitors its input lines continuously. Any changes in the input lihes
affecCt the output (ines immediately. One input line Called R/W is used
to distinguish between read and write operations. rite operations
are “easily’ hahdled sinCe they almost always g0 to RAM, so we'll
concentrate oh read operations. Of all the PLA'S lines, we only heed
t0 be concerhed about four right now: two input lines, GAME and

11

EXROM; and two output lines, ROML and ROMH. The function of
the GAME and EXROM lines is affected by other input lines, such as
HIRAM and LORAM, but for this discussion we'll assume that
HIRAM and LORAM are both held in their normal state (high).

GAME and EXROM are inputs to the PLA from the cartridge port.
They are not connected to anything else in the C-6¢. GAME is pin #8
on the Cartridge port. On a Cartridge BOARD, this is the 8th pinh from
the left oh the top side of the board (the component Side, where the
EPROM’s are mounted). See the diagram in appendix D. EXROM is pin
#9, right next t0 GAME. Both are active |ow, that is, when grounded
(0 volts). With no Cartridge plugged in, these lines are automatiCally
held high (+5 VolIts). Jt'S up to the Cartridge to ground these lines or
hOot, according to the memory configuration it wants the PLA to set
up. In a nutshell, this is how the PLA Khows what type Of Cartridge is
conhected. If EXROM alone is grounded, it indiCates ah 8K Cartridge
(regardless of how many EPROM’s are actually oh the board, as we'll
see). If both EXROM and GAME are grounded, it indiCates a 16K
Cartridge. Finally, if just the GAME line is grounded, it indiCates a
MAX Cartridge (either 8K or 16K). Grounding a line is as Simple as it
sounds - just connect it to the computer's ground. Pins 1, 22, A and 2
onh the Cartridge port are all grounds.

A banhk-switChed Cartridge |00Ks like a stahdard 8K Cartridge to the C-
6%. The Cartridge will ground only the EXROM line, so the PLA thinks
the Cartridge contains 8K Of memory at $8000-89FFF. This is aCCurate
as far as it goes: only 8K Of Cartridge memory Wwill be available at a
time, ahd it Will appear at $8000. However, the Cartridge board may
contain any humber of EPROM’s. SpecCial CirCuitry onh-board the
Cartridge piCks out one EPROM at a time tO appear at $8000.
Accessing this memory is a two-stage process: the PLA brings the
ROML enable line 1ow and theh the Cartridge bank-switCh Circuitry
passes this enable signal to its currently selected EPROM. The C-6¢
doesh't kKhow about the secohd Stage, Of Course; it just sees a
Standard 8K Cartridge. The only time the C-6¢ has to do anything
special is when it wants the board to change the current EPROM.

To tell the board t0 Change the current EPROM, we have to send 3
specCial signal to the board. e can't use the regular address, data or
enable lines for this, however. Inhstead, MoOst bank-switCh Cartridges
use a special line, not normally used for anything else on the C-6¢
(except the 280 CP/M cCartridge). There are aCtually two Of these
lines t0 choose from, Called 1/01 and 1/02. 1/01 is set [ow whenever a

12

read QR write operation accesses the SDEQQ-SDEFF area (hote that
the ROML and ROMH lines are set |ow only on read operations). 1/02
is similar except it's triggered by references to the $SDFOQ-SDFFF area.
1/01 ahd 1/02 are pins 7 ahd 10 onh the Cartridge port, respectively. On a
bank-switCh board, ohe of these lines Will be conhected to a special
piece Of Circuitry Called the bank-select register (BSR). Depending on
whether 1/01 or 1/02 is used, the BSR will appear at SDEQQO or $DFO0
in memory. To switCh the Current EPROM all You have to do is trigger
the BSR, usually by writing a partiCcular value to it. That's all there is to
it. OhCe you trigger the BSR, the EPROM selected will appear at
88000 immediately.

Bank-switCh Cartridges are especCially useful for programs which are
to0 |arge to fit in 16K (the maximum for a regular-type Cartridge).
Bank-switChing Canh also provide considerable protection for a
program, depending on how it is used. There are two main ways a
cartridge can use bank-switching. The simplest way is to just download
the program from the EPROM’s into RAM memory, one 8K Chunk at a
time. After downloading, many Cartridges Cah remove themselves from
memory by “ungrounding" the EXROM line Via specCial CirCcuitry. This
frees up the RAM at $8000 (under the Cartridge) for use by the
program. The simple download method is relatively easy to set up but
doesn't offer much protection for the progratm. A second way to use
bank-switChing is to have different sections of the program on
different EPROM’s. Depending on which part of the code is needed,
the board cah select the proper EPROM. The code is hever
downloaded into RAM, but rather executed directly on the EPROM,
This is much more compliCated for the programmer to set up, but it is
also a very solid program proteCtion technique. To make a RAM
executable copy from such a Cartridge, if it could be done at all, the
code would have to be modified extensively.

OkaY, so GAME and EXROM tell the PLA what's going on. What does
the PLA do about it? This brings us to the PLA output lines ROML
ROM Low and ROMH MROM High.. ROML and ROMH are
connected only to the Cartridge port. They are both normally held high
(+5V) unhless a cartridge grounds EXROM or GAME (or both).
Depending on which of these lines are grounded, the PLA will bring
ROML and/or ROMH iow too. What are ROMH and ROML? Nothing
more than two EPROM enable linest ROML is the combined QE/CE
enable line for the first cartridge, EPROM, loCated at $8000-$9FFF in
memory. With a Cartridge (any type) plugged in, the PLA will bring
ROML low any time a read operation tries t0.3ccess the $8000-$9FFF

13

area. Remember, bringing an enable line low will activate the Cchip.
ROML is hot held 1ow all the tithe, since then the chip would be active
even when other areas Of memory were being accessed (resulting in
bus conflict). ROML is only held low momentarily untii the read
operation can be performed. This is how the PLA ‘tells1 the EPROM
it is located at $8000 - the PLA only ' enables the EPROM when that
area Of memory is being accessed.

The ROMH enable line is just a little more complicated because the
second EPROM appears at different (oCatiohs in memory with
different types of Cartridges. With a standard 8K Cartridge (EXROM
grounded), the second EPROM is not used and so it's disabled by
holding ROMH high at all times. With a standard 16K Cartridge (both
GAME and EXROM grounded), any read operations in the $A000-
$BFFF area will sighal the PLA to bring ROMH low. SinCe POMH is
connected to the second EPROM'S enable lines, this will make the
EPROM appear at $AOQ0 in memory. With a MAX cartridge (GAME
grounded), read operations in the SEQOQ-FFFF area will enable the
second EPROM through ROMH and make it appear at SEOQOQ. Note
that with a MAX Cartridge, you MUST have an EPROM at SEOQQO-
SFFFF sinCe the miCroprocessor automatiCally (0oks there oh reset.
The $8000-89FFF EPROM is optional with MAX cartridges (and in
fact, rarely if ever used).

At this point a littie review is in order. The GAME and EXROM lines
ruh from the Cartridge to the PLA. They tell the PLA what type Of
memory Configurationh to set up. Rased on the memory configuration,
the PLA enables the cartridge EPROM’S at the proper times using
ROML and ROMH. Cartridge EPROM’S are only enabied for read
operations, nhever write operations. A Cartridgée EPROM is only
enabled when its partiCular area of memory is referenced. The PLA
controls which area of memory is assigned to the Cartridge EPROM’S,
depending onh the state of the GAME and EXROM lines. The PLA
“monitors the GAME and EXROM lines continuousty.

The Cartridge types we've examined SO far by no means exhaust the
possibilities. By manipulating the GAME, EXROM and other lines,
many exotic Cartridges Can be Created. The most common example of
an exotic cartridge is a banhk-switCh Cartridge. "Bank-switChing” means
turning memory Chips oh and C©FF, SO different Chips Can occupy the
same addresses at different times. Sound familiar? The C-6¢4 already
uses bank-switChing, controlled by the PLA, to seleCt itS different
memory configurations. What's different . about bahk-switChed

14

Cartridges is that the bank-switching is done on-board the Cartridge
itself, in addition to the memory selection done by the PLA.

AUTOSTART CARTRIDGES

Suppose you Wish to set up a Cartridge that runs automatiCally when
the computer is powered up or RESET. To do this you'll have to
interrupt the normal power-up (RESET) proCess somehow, and forCe
the computer t0 execute your cartridge program. Depending on where
you interrupt the normal process, however, your program may have to
initialize some areas Of the computer for proper operation. For
instance, it may have to initialize the 6510, VIC or CLA chips, or the
- KERNAL or BASIC RAM areas. Thus it's important t0 kKnow what
initialization is done normally, when it's dohe end why. Ih this Chapter
we'll examine the Various ways to interrupt the RESET process ahd
autostart a Cartridge, including the necessary initialization tasks.

There are three maih methods you Cah use tO autostart a Cartridge.
Each method involves interrupting the RESET process at a different,
point, and eaCh method is best suited to a different Kind Of Cartridge.
We'll start with the easiest method first, which we call the $AQ000
method (you'll see why in a minute). The RESET process Canh be divided
into two phases, KERNAL initialization and BASIC initialization.
BASIC initialization is only necessary if your Cartridge must be
compatible with the BASIC system. For example, if your Cartridge
adds comtnands to the BASIC language or uses certain BASIC ROM
subroutines, you'll heed to initialize BASIC.

/

$A000 METHOD |

If you don't need the BASIC system, you Can "trick’ the KERNAL
RESET process into doing all your initiglization for you and then
autostarting your cartridge. After completing its ownh initialization
tasks, the KERNAL RESET routine attempts to "Cold-Start” (initialize)
BAGSIC. It does this by jumping to the |ocation specified by the BASIC
COLD-START VECTOR. Like all vectors, the BASIC cold-start
- Vector COnsists Of two conhsecutive bytes conhtaihing a memory
address. The address is stored in |o-byte [/ hi-byte order, whiCh means
the |ow order (least significant) byte is first and the high order (most
significant) byte is second. The KERNAL expects the BASIC cold-
$tart vector to be found in locations $AQQQ-01 , which is hormally at
the very beginhing of the BASIC ROM. The contents of these two
locations in the BASIC ROM are $9¢ and $E3 respectively, which

15

means they "point” to (oCation $E39¢ (vectors are also Called pointers).
This location is the start of the BASIC Cold-start routine.

If we could change the BASIC cold-start vector, we could make it
point tO our Cartridge program. Qur Cartridgée would Sstart up
automatically after all KERNAL initialization was finished. But since
this vector is in the BASIC ROM, how do we change it? Answer:
replace the BASIC ROM. Hot physiCally, Of course, but by using a
standard 16K Cartridge. Recall that stanhdard 16K Cartridges reside at
$8000-BFFF. The PLA switches out the BASIC ROM and selects the
16K Cartridge configuration when it senses that both of the GAME
and EXROM lines are grounded. Two 8K EPROMS are required for
16K Of memory onh the Cartridge. The first EPROM resides at $8000-
$9FFF and the second EPROM resides at $AOOQ-SBFFF. All you have
t0 do is put a vector at $AOQO-01 which points to the beginhing Of
your program, and the Cartridge will be started automatiCally at the
end of KERNAL initialization.

If you only need 8K for your Cartridge, you Cah still use this techhigue.
Just use the second EPROM (SAOOQO-SBFFR) and leave the first
EPROM ($8000-89FFF) socket empty. As long as GAME and EXROM
are grounded, the PLA Will still choose the 16K configuration. This
means the RAM normally at $8000-89FFF will Still be switChed out,
however (ahd the BASIC ROM too, Of course). Since you're hot using
the first Cartridge EPROM, you'll have a "hole" in memory from $8000-
$9FFF. If you try t0O read from this area, random data may appear there.
You may even be able to use these phenomena as part Of a protection
scheme. AS usual, data written to this area will be placed in the
underiying RAM, even though you Can't read it baCk out.

g0, to review a bit, the $AO0QO method is the easiest autostart
techhique to use because all KERNAL initialization is done for you.
You don't have to worry about BASIC Initialization sinCe you Can't
use BASIC anhyway (the BASIC ROM is switched out). Of course, you
don't have access to the BASIC ROM subroutines either (there's g ot
Of useful Stuff in there). This makes the $AOOQO method most
suitable for cases where you heed the maximum 16K Of Cartridge
memory, or where you only heed 8K and don't need BASIC.

Figure B-0: AQQ ri

AQ00 00 80 - ' Your program starts at location $8000

16

CBM80 METHOD

The second Cartridge autostart method is by far the most common. It
Can be used by both 8K and 16K Cartridges that reside at $8000.
Although this method is sometimes Called the "Cartridge autostart
option’, it Can be used equally well by RAM-based programms, and often
is. You probably know it as the "CB/M80" method. One of the first
things the KERNAL RESET routine does is CheCk joCations $800¢4-08
for the string of Characters "CBM80". If these exact Characters are
NOT found there, the KERNAL RESET process continues normally.

If the "CBM80" IS found, the RESET routihe is interrupted and the
processor immediately jumps tO whatever |ocation is specified by the
CARTRIDGE COLD-START VECTOR. This vector is expected t0 be
found at loCations $8000-01. You must place a pointer here, in
stahdard [o-byte [hi-byte order, directing the processor t0 the
beginhing Of your Cartridge code. From that point oh, your Cartridge
must handle all the initialization itself for any functions it will use,
such as the I/Q devices or KERNAL or BASIC routihes. Fortunately,
you still have the KERNAL initialization routines available for use.
(Jnless you know exactly what you are doing, your Cartridge should use
these routines to initialize the functions it heeds.

Figure 8-1 presents a "generic" Cartridge initiglization routine. This
routine duplicates most of the normal RESET process. In facCt, it's
taken right from the main parts of the KERNAL (SFCEFFE) and
BASIC ($E394-9F) RESET routines. This generic routine will be
adequate for 99% Of all Cartridges.

17

Figure 8-1: CBM80 Cartridge Initialigation

8000 09 80 Cartridge ccold-start vector = $800%
B002 25 80 " % warm " * R = B025
8004 C3 C2 CD 38 30 CEMBO - Autostart key

KERNAL RESET Routine
B0O9 8E 16 DO ST¥ SD0OL16 Turn on VIC for PAL / NTSC check
800C 20 A3 FD JSR SFDAZ IO INIT - Init CIA chips B
800F 20 50 FD JSR S$FD50 RANTAS - Clear/test system RAM
8012 20 15 FD JSR SFD15 RESTOR - Init KERNAL RAM vectors
8015 20 5B FF JSR SFF5B CINT - Init VIC and screen editor
BO18 58 CLI Re-enable IRQ interrupts

BASTC RESET Routine

8019 20 53 E4 JSR $E453 Init BASIC RAM vectors

8D1C 20 BF E3 JSR SE3BF Main BASIC RAM Init routine
801F 20 22 E4 JSR $E422 Power-up message / NEW command
8022 A2 FB LDX #SFB

BO24 SA T¥S Reduce stack pointer for BASIC
8025 START YOUR FROGRAM HERE

The Cartridge cold-start vector and autostart key (CBM80) have
already been discussed. The warm-start VeCtor at $8002-03 iS a feature
that allows you to re-ehter your prograt after a full initialization has
already been done. OncCe a cold-start has been done, it usually doesn't
heed to be done again. Pressing the RESTORE key calls the NMI
routine (NON-MASKABLE INTERRUPT), which will see the CBM80
and jump to the location indiCated by the warh-start vector. This is
why many programs restart themselves when you press the RESTORE
key. In our initiglization routine we have pointed the warm-start
vector tO the start Of your program; You Could also point it tO $8009
t0 perform a full cold-start on RESTORE. If you want to disable the
RESTORE key entirely, point the warm-start vector to SFEBC (returh
from NMD.

We have included the BASIC RESET process in this Cartridge
initiglization routine too. AcCtually, the normal BASIC RESET routine
dead-ends with a jump to the BASIC direCct mode interpreter, also
known as READY" mode. This prints the "READY." prompt and then
Sits there waiting for, you to type a BASIC command. You won't
usually want to exit into READY mode at this point since BASIC will
take over and your Cartridge will (ose control. If you do want to eXit
t0 BASIC how or [ater, You may do so with JMP $E386. By the way, the
routine Called at $801F {JSR $E422) prints the nortmal power-up sCreen
and does a NEW command. If you want to skip the power-up message,
Just call the NEW command direCtly using JSR $A644 instead of JSR.
SE422.

To sutnmarize, the CBM8o method cah be used with either 8K or 16K

Standard Cartridges (whiCh start at $8000). The Cartridge initialization
routine above Wwill be Sufficient for the vast majority Of Cartridges.

18 | T

KERNAL initialization must be done at |east onCe (on power-up or
RESET). BASIC initialization Cah be skipped if you're nhot using
BASIC, ahd MUST be skipped if You're using a 16K Cartridge. Through
the Cartridge warm-start vector, the RESTORE key Can be set up to
re-enter your program Or it Cah be disabled entirely. The CBM80
method is by far the most common Cartridge autostart method.

MAX METHOD

The third and last autostart method is the MAX method. This
requires the use of an JLTIMAX Cartridge (one that grounds just the
GAME line). The second EPROM in a MAX Cartridge resides at
SEOOOQ-SFFFF, replacing the KERNAL ROM (the first EPROM
appears at $8000-$9FFF if used). MAX Cartridges have many limitations
ahd are rarely used commercially except for simple video games. One
limitation of MAX Cartridges is that only 4K of the computer's RAM
iS available for use, and one-quarter Of that iS required for sCreen
memory. Anhother limitation is that the KERNAL ROM is switched
Off, whiCh Mmeahs Yyou must write Yyour own powerup/RESET
initialization routines (although you may use the KERNAL routines as
a guide). You don't heed to worry about BAGSIC initialization sinCe the
BASIC ROM is switChed out too. For these reasons, You'll probably
never heed to set up a MAX Cartridge. Only an advanhced user would
want tO consider using this method.

MAX Cartridges autostart through a hardware function of the 6510
processor rather than through a software routine in the KERNAL like
the other two methods. When the C-6¢4 is powered up, a Special CirCuit
RESETS the 6510 microprocessor, SID and CIA chips, just as if you
had performed a hard RESET yourself (with @ RESET button). Two
very important events take place immediately, truCion arS.SVen
executed. First, the /O deviCes 6510 processor fetches its RESET
vector from |ocations SFFFC-FD, hormally in the KERNAL ROM. The
RESET vector is @ two-pyte value that points t0 the beginning of the
KERNAL RESET routine. The processor ALWAYS gets its RESET
vector from locations SFFFC-FD. This feature is "hard-wired" into the
6510 chip itself, and CANNOT be changed! You must make sure the
proCessor finds a Valid address in |oCcations SFFFC-FD, which is why
the KERNAL is normally switched in first on RESET. The processor
does an indireCt jump based on the RESET vector and normally begins
executing the KERNAL RESET routine.

The only alternative to executing the KERNAL RESET routihe IS if a
MAX cartridge is present. If the PLA senses that a MAX Cartridge is
plugged in (GAME line grounded), it switChes ih the Cartridge at
SEQOQ-SFFFF, replacing the KERNAL. Then when the 6510 fetChes
its RESET vector from $FFFC-FD, it will get it from the Cartridge
instead of the KERNAL. You simply place a vector at SFFFC-FD
pointing to the begihning of your RESET routine and the proCessor
will start executing your routine automatically. This is how the MAX
autostart method works - your cartridge is switched in and grabs
control right from the start.

Now it's up to your Cartridge to perform all hecessary initialization.
For instance, the VIC chip must be initialized in order to use the
screen. Likewise, other /O devices will have to be initialized if you
want to use the Kkeyboard, the joysticks, the sounhd chip, IRQ
interrupts, etc. Initializing and controlling these devices Canh be quite
complicated. We recommend that you use the corresponding
KERNAL routines as a model for your owh routines. In facCt, manhy
MAX CcCartridges contain almost byte-for-byte copies of KERNAL
routines. While we can't cover the KERNAL routines in depth in this
book, we Can summarize the Various initialization routines used inh the
normal RESET process. This will help get you started towards an
understanding of what initialization your Cartridge will require.

NORMAL RESET PROCESS

Recall that when the 6510 processor is RESET, it begins executing at
the address specified by the RESET vector at $FFFC-FD. In the
KERNAL ROM, these |ocations contain a pointer to the KERNAL
RESET routine at $FCE2 (deCimal 64738).. The main part Of the
KERNAL RESET routine is shown in figure 8-2. Note the similarities
to our CBMB80 cartridge initialization routine (Fig. 8-2). The KERNAL
RESET routine takes three important steps right away.” First, IRQ
interrupts are disabled with a SEI instruction, so the routine won't be
interrupted. Second, the stack pointer is ihitialized by transferring a
value to it from the X-register, using a TXS instruction. The staCk
pointer indiCates the hext empty position on the staCk, whiCch grows
DOWNWARD in memory from $0IFF 'to $0100 (i.e. the pointer
decreases as the stack is filled). The staCk pointer Contains a random
value on RESET, SO we should put a value here before any StaCk
operations take place (i.e. a PHA, PLA, PHP. PLP, JSR, RTS, RTI
instruction or ah NMI. IRQ or BRK interrupt). The RESET routine

4

sets the stack pointer t0 SFF, which starts the stack out at the very
top (@llowing it the maximumm space).

The third step is tO Clear the deCimal mode flag with a CLD
instruction. This flag controls whether math instructions like ADC
(add) and SBC (subtract) are performed in normal "hex" format
(actually binary) or ih BCD format BINARY CODED DECIMAL).
Like the stack pointer, this flag has a random value oh power-up, SO it
iS set t0 0 t0 ensure that math is done in hex format. If You write your
own Iinitiglization routine for a MAX Cartridge you should also do
these three things right away.

Figure 8-2: CBM80 Cartridge Initialisation

FCE2 A2 FF LDX #3FF Stack pointer wvalue

FCE4 78 SEI Disable IRQ interrupts

FCES 9A TXS Initialise stack pointer

FCE6 DB CLD Clear decimal mode

FCE7 20 02 FD JSR S5FD02 Check for CBEMBO key

FCEA DO 03 BENE SFCEF Brank if not found

FCEC 6C 00 80 JMP (58000) Jump to cartridge cold-start
FCEF BE 16 DO STA 35D0ls6 Turn on VIC (Ac=%05)

FCF2 20 A3 FD JSR S$FDA3 IDINIT - Init CIA chips

FCF5 20 50 FD JSBR SFD50 RAMTAS - Clear/test system RAM
FCF8 20 15 FD JSR S$FD15 RESTOR - Init KERNAL RAM vectors
FCFBE 20 5B FF JSR S$FFSB CINT - Init VIC and screen editor
FCFE 58 CLI Re-enable IRQ interrupts

FCFF 6C 00 A0 JMP (S$A000) Jump to BASIC cold-start ($E394)

After the first three steps, the RESET routine Calls an importanht
subroutine at $FDo02. This routine checks locations $800¢-08 for
"CBM80" autostart key. If these exact Characters are found there,
the Cartridge cold-start vector is fetched from $8000-01. ExXecution
continues at whatever |0Cation is indicated by this vector. This is the
point at which the CBM80 autostart method takes control.

If there is no "CBM80" found, the RESET process contihues at
SFCEF. The X register is stored into |oCationh $0016, which is the VIC
control register. The value of X at this point is always $05 or |ess, Sihce
it was used as an index in the check for "CRM80" (which has 5
Characters). Commodore says it's extremely important to make sure bit
nhumber 5 of this value is a 0, which it is in this case. A 0 in bit 5
supposed|y turns the VIC Chip on ahd a 1 turhs it Off (see p. 322 ahd p.
448 in the Prog. Ref. Guide). For safety's sake your own initiaglization
routine should set this bit t0 0 t00. There's anh interesting side-effect
when values |ess than $05 are stored in this register. In those cases, bit
3 will also be a 0, which selects 38-Column mode. That's why the screen
"shrinks” whenh the computer goes through its normal RESET process -
bet you always wondered about that!

21 | i}

Next, the four main KERNAL initialization routines are Called. These
are the same routines we Called ih our CBMB80 initialization routine.
The first routine is JOINIT, located at $FDAS3. This routine can also
be reached by jumping to §FF8¢ in the standard KERNAL jump table.
IOINIT initializes the CIA chips. It also does some other minor
initialization such as turning off the SID's sound, switChing in the
BASIC and KERNAL ROMs (redundant on a hard RESET) and
sending a high clock sighal (“1" bit) on the serial bus. Next, the
KERNAL routine RAMTAS at $FD50 is called (§FF87 in the jump
table). This routine Clears and tests RAM. First, the routine fills
|oCations $0002-80101, $0200-02FF and $0300-803FF (pages 0, 2 & 3) with
800 bytes. This pieCe of code is responsible for the Cassette buffer,
etC. beihg Cleared on RESET. Note that the stack is not Cleared
(except the bottom two bytes).

After this, RAMTAS sets the Cassette buffer pointer and then begins
testing RAM memory starting at $0400 (the sCreen). The purpose Of
this test is to find the start of non-RAM memory, i.e., to see if there is
Cartridge ROM at $8000. The test is supposed to be "hon-destructive’
in that RAM memory is hot aitered. First, the Current contents of the
|oCation to be tested are saved in the X-register. A $55 byte is stored
into the |ocation and then the |ocation is read back to see if the $55
was stored successfully. If the |oCation how contains a $55 then it is
obviously ih RAM - or is it? What if the location is in ROM but
happenhed tO already contain a $55? TO doubie-Check this, the process
iS repeated with the value $AA instead of $55. If it passes both tests,
the |oCationh is definitely in RAM. The original value saved in X is
restored, and the test contihues with the next byte.

Eventually, the routine will run into ROM (either Cartridge ROM at
$8000 or BASIC ROM at SAQQQ). When ROM is encountered, a very
undesirable side-effecCt occurs. The $55 byte that is written out goes
into the RAM "under” the ROM, wiping out the Value that was there.
This is important tO remember when you are trying to recover a
Crashed program by resetting it. OQnce the start of ROM is found, a
routine at SFE25 (MEMTOP, jump table $FF99) is Called to set the top
Of Systet RAM to the beginning of ROM. The top of system RAM is
used in the CalCulation of the humber of BASIC bytes free. Finally,
the bottom Of system RAM is set t0 $0800, and the start Of the
sCreen is set t0 S0400 for the screen editor.

Back in the main RESET routine, a routine at $FD15 is Called
(RESTOR, jump table $FF8A). This routine copies the KERNAL'S
indirect RAM vectors t0 $031¢-33 from the table at SFD30-4F. Qddly
enough, it also copies this vector table into the RAM under the
KERNAL at $FD30-¢F too! If you are trying to -recover the contents
of the RAM under the KERNAL after a RESET, You should
retmember this feature.

The final KERNAL initiaglization routine is at $FF5B (CINT. jump table
$FF81). This routihe initializes the VIC chip anhd SsCreen editor
variables. The VIC chip is initialized by callihg a routine at SESAQD
which downloads a set of constants to the VIC from SECB9-E6. This
sets the border and background Colours as well as the raster interrupt
register, used in the PAL/NTSC check discussed below. The sCreen
editor is initialized by a routine at $E518. This sets the CharacCter
colour, keyboard decode table vector, cursor blihk ahd key repeat
rates, and then clears the screen. The CINT routine ends with the
PAL/NTSC check. NTSC is the North American TV standard and
PAL is the International TV standard. There are more lihes on the
screen with PAL. This fact is used to detect which system you have,"
so the TRQ and RE-232 timing Canh be adjusted accordingly. The VIC
raster (sCreen line) interrupt was set earlier t0 OCCur oh a line which
doesn't exist with NTSC. Later (at $FF63) the interrupt is CheCcked to
see if it happened. If it did, we're on a PAL system, otherwise it's
NTEC. See the Prog. Ref. Guide pp. 150 & 447 for more information on
the raster interrupt register.

That's about it for the KERNAL RESET routine. JRQs were disabled
earlier, so they are re-enabled with a CL]I instruction. Finally, BASIC
initialization is begun by jumping based on the BASIC cCoid-start
vector in the BASIC ROM at $A000-01. If a 16K standard Cartridge
is present, however, its second EPROM will have replaced the BASIC
ROM in memory. In this Case we must put g vector at $AQQOQ (ih the
seconhd cartridge EPROM) to point tO the Start Of the Cartridge
program. This is the basis for the $A00Q0 autostart method. Notice
how all the KERNAL initialization has already been done for us inh this
case.

For you MAX Cartridge users, this brief outline should be a guide to
examining the RESET process yourself. A reference book such as

ANATOMY OF THE COMMODORE 64 will be an invaluable aid.
- There is no substitute for studying the RESET process yourself. e
Can only give you a few guidelines about what you shouid and should

23

not do in your MAX Cartridge. The only things you HAVE to do are
set the stack pointer to some value (usually $FF) and either Clear or set
decCimal mode (usually Clear). You'll almost certainly want to use the
sCreenh, SO you'll need to set up the VIC chip. Look at the table of
constants at SECB9 to see what values are put into the VIC'S registers
normally. Also remember to turh the VIC on as done at SFCEF-F1, and
select itS memory bank as done at SFDCB-CF. If you waht to do 3
PAL/NTSC check, the code at $FFS5E-64A Cah be your guide. If you
want to set up an IRQ interrupt, study the IOINIT routine and the
code at SFF6E-7C. Disk, tape or RE232 commubniCations will require
enormous amounts of code. If you think you heed anhy Of these, you
probably shouldn't be using a MAX Cartridge anyway.

We can also point some initialization routines you WON'T need. The
CBM80o check routine at $FDo2 is not important sinCe your MAX
cartridge has already been autostarted. You won't need the RAMTAS
routine (SFD50) which clears memory and tests for the end of RAM /
start of ROM. Your program Cah easily Clear memory itself, ahd the
end of RAM test would always yield the same results (the only RAM is
at $0000-OFFR. The RESTOR. routine (FD15) is used to set up RAM
vectors for KERNAL routines which aren't available anyway, SO it Cah
be dispensed with. In short, only the IOINIT and CINT routines (and
related routines) contain useful MAX initialization code. A (ot of this
code is superfiuous to0. The best idea is t0 plah out whiCch fuhctions
you'll need and then study how the KERNAL sets up just those
functions.

To round out this Chapter, we should |00K at ohe other subjeCt Of
genera| interest, WARM-STARTS (via the RESTORE key). We've
already covered the Cartridge warm-start veCtor at $8002-03, whicCh
only applies to the CBM80 autostart method. There is one other
warm-start method. If the STOP key is held down along with
RESTORE, and there is no CBM80, the BASIC warm-start vector will
be used. This vector is |oCated at $4002-3, normally in the BASIC
ROM. If we have a 16K cartridge ($AOQOQO method), which replaces
the BASIC ROM, we Canh put our own warm-start vector in at $A002.
In facCt, you should always put a valid vector there to guard against
the user accidentally pressing the RUN/STOP-RESTORE combination.

Finally, there is ho warm-start method for MAX Cartridges unless you
program it yourself. You may choose to use the RESTORE Kkey for this
or some other method. If you don't use the RESTORE Kkey, you should
set the 6510 NM] vector at SFFFA-FB to point t0 an RTI instruction in

24

case the user accidentally presses RESTORE. The 6510 is hard-wired
t0 use $FFFA-FB as its vector when an NM]I is generated RESTORE
key pressed), just as it always uses SFFFC-FD for its RESET vector.

UNIVERSAL 8/16 CARTRIDGE

The all new Alphaworks (Jniversal Cartridge has been desighed tO
work with either 8K (276¢ series) or 16k (27128 series) EPROMS. To set
up the (Jniversal Cartridge to acCept 8k or 16k EPROMS please
configure the dip switCh with the following settings.

- 8k Cartridge ($8000 - $9FFF)
1 = OFF
2= ON
3 =0ON
4 = OFF

16k Cartridge ($8000 - $BFFF) *
1 =ON

2=0N

3 = QFF

4 = ON

* BASIC ROM will be switched out

COMMODORE 128 CARTRIDGE MODICATIONS

Either of the Alphaworks Cartridge boards Can be modified t0 work
with the Commodore 128 in 128 mode. This Can be achieved by making
sure that EXROM libe in no longer conhnected to ground. Without
EXROM connected to ground your C128 will hot boot into Cé4 mode
but instead try to [aunch the Cartridge in C128 mode.

* IF you modify the Alphaworks 8k Cartridge it will only allow for an 8k
C128 programm

* If you modify the (Jniversal 8/16 Cartridge it will allow for a 16k C128
program :

26

hitp:/Aww.alphaworks.com.au/blog/

27

